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ABSTRACT

Dynamic stability of elastic structures is a fascinating topic. Many researchers have 
examined the problem theoretically considering a cantilever column under a tip-concentrated 
tangential load, the so-called Beck column. Experimental verification is demanded since 
the critical load of Beck column is found to be approximately eight times to that of the 
classical Euler column. Different types of testing procedures are being adopted to create 
the follower force. Among them, notable Willems experimentation provides the critical 
load close to that of Beck column. Investigations made by other researchers indicate the 
controversy associated with modeling and testing of Willems on Beck column. Such an 
intriguing problem of structures loaded by non-conservative forces is revisited here through 
a simple mathematical formulation. This paper confirms the adequacy of Willems approach 
on Beck column and the wrong critical load assessment of others. It indicates the possibility 
on the practical realization of follower forces 

Keywords: Beck column, coalescence frequency 
parameter, critical load parameter, dynamic stability, 
frequency parameter, tip-angle, tip–concentrated 

tangential load

INTRODUCTION

Space launch vehicles subjected to 
aerodynamic (drag) forces acting at the 
top and along the axis of the vehicle are 
modeled as columns under compressive 
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loads. To assess their structural integrity, overall stability analysis will be performed for 
the flight conditions. After Beck in 1952, the problem of a cantilever column subjected to 
a follower load at its free-end has been solved adopting different techniques (Anderson & 
Thomsen, 2002; Langthjem & Sugiyama, 2000a; Langthjem & Sugiyama, 2000b; Rao & 
Rao, 1989a; Rao & Rao, 1989b; Rao & Rao, 1990; Rao & Rao, 1991; Madhusudan et al., 
2003; Zahharov et al., 2004; Kwasniewsi, 2010; Mutyalarao et al., 2012). Timoshenko 
and Gere (2012) had emphasized experimental verification on the critical load of Beck 
column. Sugiyama et al. (2000), Sugiyama (2002), and Sugiyama et al. (2019) had mounted 
a solid rocket motor at a free-end of the cantilever column for generating a tip-concentrated 
sub-tangential follower force and conducted experiments. They had demonstrated the 
stabilization of the system due to rocket thrust. However, their test results were found 
to be well below the critical load estimates (Mutyalarao et al., 2017). Tomski and Uzny 
(2013) had considered a slender system under a conservative load (in which the direction 
of force was towards the positive pole) and a non-conservative load (generating the Beck’s 
load through a reaction engine), whose investigations were well documented in (Tomski 
et al., 1998; Tomski et al.,2007; Tomski & Szmidia, 2004; Tomski & Uzny, 2008; Tomski 
& Uzny, 2010; Tomski & Uzny, 2011).   Willems (1966) had adopted a simple procedure 
to perform experiments. Though the critical load of Willems configuration was close to 
that of Beck’s column, Huang et al. (1967) had presented theoretical analyses of Willems 
column and Beck column creating difference only in the fourth boundary condition. They 
recommended that Willems test results were not representing the Beck column. Augusti 
et al. (1967) had made discussion on the Willems experimental investigations. In his 
author’s closure (Augusti et al., 1967), Willems accepted the difference in the treatment 
of Beck’s problem and his experimentation. He claimed that his experimentation fulfilled 
the boundary conditions of the Beck’s problem. Huang et al. (1967) had created a fourth 
boundary condition for the Willems column, which provided the same load versus frequency 
curve for the first mode of the Beck column, whereas for the second mode, the curve cut  
the load axis instead of coalescing with the first mode curve. Coincidentally, the second 
mode curve cut the load axis matched with the Willems test results. It should be noted that 
the fixed point of the column axis at a distance δ  from the free end should be same only 
at the coalescence point, whereas it changed with the load parameter and the frequency 
parameter. Huang et al. (1967) had considered sameδ  value in the Willems column for 
the first and second modes. Due to this reason, the load versus frequency curve matched 
well with the first mode of the Beck column and differed drastically with the second mode. 
However, Huang et al. (1967) analysis results with fictitious fourth boundary condition for 
Willems column created great confusion for many researchers including Willems.  

Elishakoff (2005a, 2005b) had stated that Willems experiment was “deposed”. The 
load by the follower force directed towards the pole is not representing the Beck’s force 
(Tomski et al., 1998; Tomski & Uzny, 2008). Motivated by the work of the Willems (1966) 
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and Huang et al. (1967), a simple mathematical formulation is presented here to resolve 
the controversy associated with the approach of Willems on applying tangential load to 
cantilever column at free end.

Figure 1. Deformation of a cantilever 
column subjected to a concentrated 
Follower load at its free-end (Mutyalarao 
et al., 2012; Mutyalarao et al., 2017)

MATHEMATICAL FORMULATION

Figure 1 shows the deformation of a cantilever 
column subjected to a tip-concentrated follower 
load )(P  having tip-angle ).0(φ ’s’ is the length of 
the deflection curve from the tip. ( )sφ  is the angle 
between the tangent to the deformed column and its 
vertical axis. 

From the  moment -curva ture  ( )1−− ρM  
relationship, Mutyalarao et al. (2017) have presented 
a system of nonlinear differential equations for large 
deflections of a cantilever column. They are briefly 
presented below as Equation 1, 2 and 3 for clarity.

ds
d

EI
M φ

ρ
==

1

			 
[1]

Here, 

TAP MMMM ++= 		  [2]

The bending moment produced by the tangential load ( )PM , and by the action of 
inertia forces ( )TA MM , are as in Equation 3, 4 and 5

( ) ( ) ( ) ( )XXPYYPM aaP −×+−×−= 0sin0cos φφ 			   [3]

( ) ( ){ } ( ) ( ){ }∫ ∫ −Ω−=−=
S S

A dtYtsYmudtYtsYumM
0 0

2 ,,,, ζζζζ 	 [4]

( ) ( ){ } ( ) ( ){ }∫ ∫ −Ω−=−=
S S

T dtXtsXmvdtXtsXvmM
0 0

2 ,,,, ζζζζ 	 [5]

E is the Young’s modulus of the column material. I is the moment of inertia. L is the 
column length. m is the mass per unit length of the column. ( ) ( )YsLXvu ,, +−= , are 
the column deflections. ( )YX ,  are the deformed column coordinates. Harmonic motion 
assumed for the deflections ( )vu,  in Equation 4 and 5, which obey Equation 6 and 7
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02 =Ω+ uu 								        [6]

02 =Ω+ vv 								        [7]

Ω  is the circular frequency and over dots denotes differentiation with respect to time, t.
The deformed column coordinates can be obtained from

( ) ( ) ( ) ( )∫∫ =





=⇒=

1
sin,cos,,sin,cos,

η
ηφφφφ d

L
Y

L
XyxdsYX

L

s
	 [8]

Here, 
L
s

=η . At s = 0, Equation 8 gives the column tip-coordinates ),( aa YX . 

Equation 1 and 8 are differentiated with respect to s. Defining; ∫ −−=
η

ξξ
0

)1( dxH

; ∫=
µ

ξ
0

dyV ; load parameter, 
EI

PL2

=λ ; frequency parameter, 
EI
mL2Ω=ω , the governing 

equations are written in non-dimensional form as Equation 9, 10, 11, 12 and 13 (Mutyalarao 
et al., 2012; Mutyalarao et al., 2017)

0)cossin())0(sin( 2 =++−+′′ φφωφφλφ VH 				    [9]

0)1( =−−−′ xH η 							       [10]

0=−′ yV 									         [11]

0cos =+′ φx 								        [12]

0sin =+′ φy 								        [13]

The boundary conditions for Equation 9 - 13 are as in Equation 14 and 15

0),0( ===′= VHφφφ  at η  = 0 						      [14]

0=== yxφ η  = 1							       [15]

Primes denote differentiation with respect to η . Following Willems (1966), the tangent 
at the free end of the deformed column in Figure 1 makes the angle ( )0φ , which can be 
related to Equation 16

( )
)(

0tan
δ

φ
−−

=
LX

Y
a

a 							       [16]
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Here δ is the distance from the tip of the un-deformed column to the point where 
the tangent line at the free end of the deformed column intersects the column axis. In 
case of small deflections (i.e., ),0→φ  1cos ≈φ  and φφ ≈sin . Equation 8 gives 
( ) LXsLsX a =⇒−=  and Equation 16 becomes Equation 17

( )
)0(

0
φ

δ
δ

φ aa YY
=⇒=

)0()0( φφ
δ aa y

L
Y

L
==⇒ 				    [17]

Defining 
)0(

~
φ

yy = , the nonlinear differential Equation 9 - 15 for small deflections are 

in the form of Equation 18

0~~~ 2 =−′′+ yyy iv ωλ 							       [18]

The boundary conditions for Equation 18 arrived are as in Equation 19 and 20

0~~,1~ =′′′=′′−=′ yyy  at 0=η 						      [19]

0~~ =′= yy  at 1=η 							       [20]

The general solution of the Equation 18 is Equation 21

( )ηληληληλη 2211 sin)(cos)(sinh)(cosh)(~ DCBAy +++= 	 [21]

Here (Equation 22 and 23),

22
1 25.05.0 λωλλ ++−= 						      [22]

22
2 25.05.0 λωλλ ++= 						      [23]

From Equation 19 and 21, one obtains Equation 24, 25 and 26

121 −=+ DB λλ 								        [24]

ACCA 2
2

2
1

2
2

2
1 0 −=⇒=− λλλλ 						      [25]

BDDB 3
2

3
1

3
2

3
1 0 −=⇒=− λλλλ 						      [26]

Using Equation 20, 21, 25 and 26 one obtains Equation 27 and 28
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( ) ( ) 0coscoshsinsinh 2
2

2
2
112

1
211 =++− −− BA λλλλλλλλ 		  [27]

( ) ( ) 0sinsinhcoscosh 2
3

2
3
112

2
2

2
11 =+++ −− BA λλλλλλλλ 		  [28]

From Equation 27 and 28, the transcendental equation relating λ  and ω  is in the form 
( )( ) ( ) 0coscoshsinsinhsinsinh 2

2
2

2
2
112

3
2

3
112

1
211 =+−+− −−− λλλλλλλλλλλλ , which can be 

further simplified to Equation 29

0sinsinh)coscosh1(2 2121
22 =+++ λλλωλλωλ 			   [29]

Equation 29 is solved for ω  by specifying λ  using the Mathematica®.
Using Equation 24 - 28, one can find the arbitrary constants A, B, C and D in Equation 

21. From Equation 17, one can find Equation 30

( )
( )
( ) ( ) ( )2

2
11

2
2

2
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11

3
22
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sinsinh
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0
0
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φφ

δ
+
+

=+=+==== −ACAyyy
L

a

	
[30]

Following Mutyalarao et al. (2017), stability of the column is assessed from λ  versus 
ω  eigencurve. Critical load parameter ( )cλ  is a minimum value where the eigencurve 
cuts the λ -axis. The dynamic stability load is the minimum load where two branches of 
eigencurve coalesce. A simple procedure is presented below for generating the eigencurves 
from the first two frequency parameters ( 1ω and )2ω specifying the load parameter ( )λ . Setting 

0=λ  in Equation 29, 1ω  and )2ω  are found for the unloaded column. The eigencurves 
are generated considering the first two frequencies by specifying the values of λ varying 
from 0 in steps of 1. When λ value is reached to 21, Mathematica® provides bifurcated 
frequency values. Each time, the step size is reduced to half for obtaining the frequency 
values prior to the bifurcation load parameter. At ,0905.20=cλ the two positive frequency 
values are tending to the coalescing frequency parameter ( )cω  value of 11.011. Variation 
of λ  with λ is shown in Figure 2. Figure 3 shows variation of δ /L with λ . It should be 
noted that the results are presented in non-dimensional form for the non-dimensional load 
parameter (λ ) and frequency parameters ( 1ω and 2ω ) useful for any specified column 
dimensions and material.

For the specific λ, Figure 2 gives the first two frequency parameters (ω1, ω2). Hence 
Figure 3 shows two δ/L values for each value of λ. At the coalescence frequency ωc these 
two values of δ/L are identical. It is noted from Figure 3 that δ/L should be 0.42312. λ 
versus ω curve shown in Figure 2 closely matches to that of Huang et al. (1967) for the 
Beck column. For the specific λ, the frequencies (ω1 and ω2) and δ/L are obtained from 
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Equation 29 and 30. Table 1 gives the comparison of present analysis results with those 
of Willems (1966).

Values of δ for the specific λ and ω1 in Table 1 are reasonably in good agreement with 
those of Willems (1966). However, the transcendental Equation 29 for the specific λ, gives 
slightly different ω1 and ω2. This is the reason why δ values of Willems (1966) in Table 1 
slightly differ from the present analysis results. Figure 4 and 5 show the first and second 
mode shapes generated from Equation 21 for the unloaded column (λ = 0) and for the 
specific λ and the corresponding ω1 and ω2. Figure 4 and 5 clearly indicate different mode 
shapes due to different frequencies (ω1 and ω2 for the same load parameter (λ). In case of 
critical load parameter (λc), these two frequencies (ω1 and ω2) tend to ωc. Hence, the first 
and second mode shapes in Figure 6 are identical, which result the same δ/L.  

Willems (1966) had used only the boundary conditions of the Beck column to 
arrive δ for the applied the load (P).  A slight impact was given to the column and observed 
vibrations of a stable character (when P is less than the critical load) and damped out. 
Vibrations caused excessive amplitudes resulting in failure at the critical load. For the 

Figure 2. Variation of λ withω Figure 3. Variation of δ /L with λ

Table 1
Comparison of frequencies (ω1 and ω2) and δ for the specified λ 

First Mode Second Mode

λ ω1

δ/L
λ ω2

δ/L
Present 

Analysis Willems (1966) Present 
Analysis 

0 0 3.5160 0.7265 0.727 0 22.0344 0.2092
0.5 4.9348 4.2071 0.6931 0.750 4.9348 20.4578 0.2296
1.0 9.8696 5.1461 0.6496 0.676 9.8696 18.6395 0.2570
1.5 14.8044 6.5545 0.5884 0.585 14.8044 16.3664 0.2977
2.0 19.7392 9.8282 0.4665 0.464 19.7392 12.2545 0.3936

2.0315 20.0509 11.01 0.4252 ----- 20.0509 11.01 0.4252

2π
λ
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steel column of size 304.8 × 7.62 × 2.54 mm, the critical load parameter reported by 
Willems (1966) was 18.61, whereas the present analysis was 20.05. The discrepancy 
in the results might be due to inaccurate calculations of δ by Willems (1966), mass 
and stiffness of the column. However, Willems (1966) experimental results are within 
7% of the analysis results. It should be noted from Willems (1966) that Willems had 
concentrated on the critical load alone. The fast camera might had been used to capture 
the individual displacement stages of column during flutter phenomena. The eigencurve 
of the first frequency obtained by Willems (1966) and that of the Beck column were 
same. The upper curve of δ in Figure 3 corresponds to λ and ω1, whereas the lower curve 
of δ corresponds to λ and ω2. For the case of λc and ωc, δ value is 0.423L. By imposing 
correctly, the passage through this fixed point yield λc.  

The curvilinear coordinate system simplifies the complexity of the mathematical 
formulation for large deflections. The above small deflection analysis results are obtained 
by specifying the tip-angle ϕ(0) as 0.010 and solving Equation 9 - 15. Being a non-linear 

Figure 6. Mode shapes for the critically loaded 
cantilever column

Figure 4. Mode shapes for the unloaded cantilever 
column

Figure 5. Mode shapes for the loaded cantilever 
column
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nature of the problem, it has to be solved numerically. As in Mutyalarao et al. (2013), the 
post-critical load parameter (λc), coalesce frequency parameter ωc, and the tip- coordinates 
of the Beck column as in Equation 31:

	
( ) 







=
L

Y
L

X
yx aa

aa ,, 							       [31]

for different values of the tip-angle ϕ(0) are evaluated numerically by solving the nonlinear 
differential Equation 9 - 15 using the fourth-order Runge-Kutta integration scheme. The 
boundary value problem is converted to an initial value problem adopting shooting method.  
For large deflection analysis, Equation 16 can be written as Equation 32

( )
1

10tan
−







 +−=

L
xy aa

δφ 						      [32]

which implies as in Equation 33 

( ) 1
0tan

+−= a
a x

y
L φ
δ

							       [33]

Using Equation 33, δ is computed and values are presented in Table 2. It is noted that δ  
increases marginally with increasing the tip-angle ϕ(0). From the above observations, one 
can conclude that Willems has considered in his experimentation only the Beck column.

Table 2  
Post-critical load parameter (λc) for the specific tip-angle, ϕ(0)

ϕ(0) (degree) λc ωc xa ya
δ /L 

Eq. (33)
10 20.1888 11.0294 0.9944 0.0747 0.4292
20 20.1623 11.0634 0.9776 0.1484 0.4301
30 21.3529 11.1211 0.9499 0.2201 0.4313
40 22.4690 11.2269 0.9117 0.2887 0.4323
50 24.0584 11.3828 0.8636 0.3534 0.4329
60 26.2815 11.6238 0.8062 0.4128 0.4321

CONCLUSION

Dynamic stability of elastic structures is a fascinating topic, which is being examined 
theoretically by many researchers considering a cantilever column under a tip-concentrated 
tangential load. The load versus frequency curve is essential for assessing the dynamic 
stability of such columns. Timoshenko and Gere (2012) had emphasized experimental 
validation since the critical load was found to be approximately eight times to that of the 
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classical Euler column. Different types of testing procedures are followed to create the 
follower force. Among them, notable Willems (1966) experimentation provided the critical 
load close to that of Beck column. But, Huang et al. (1967) had specified wrong input in 
the analysis and drawn wrong conclusions on Willems experimentation, which had created 
great confusion for many researchers including Willems in 1966 (Augusti et al., 1967). 

This paper resolves the controversy associated with the Willems experiments on the 
stability of Beck column through a simple mathematical modeling. It should be noted that 
Willems (1966) had aimed only on the critical load of the column and demonstrated its value 
close to that of the Beck column. Use of the fast camera in Willems experimentation might 
have captured the individual displacement stages of column during flutter phenomena. Large 
deflection analysis results indicate marginal increase in δ with increasing the tip-angle ϕ(0). 
Equation 16 can be used to obtain the position of the point of intersection corresponding 
to the critical load for small as well as large deflections of the cantilever column subjected 
to a tip-concentrated follower load. 

The controversial articles of Koiter (1996) and Sugiyama et al. (1998) on unrealistic 
and realistic follower forces remains a matter of debate (Mascolo, 2019). The problem 
in such cases is in the practical realization of follower forces (Bolotin, 1963; Elishakoff, 
2005b). Mullagulov (1994) had successfully created follower forces and performed tests. 
Approaches of Willems (1966) and Mullagulov (1994) confirmed the demands of Koiter 
(1996) on experimental validation of Beck column for the practical realization of follower 
forces. 
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